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ABSTRACT Using various methods, e.g., spectrophotometry, circular dichroism, and isothermal titration calorimetry, the
interaction of poncean S (PS) with human serum albumin (HSA) was characterized at pH 1.81, 3.56, and 7.40 using the spectral
correction technique, and Langmuir and Temkin isothermal models. The consistency among results concerning, e.g., binding
number, binding energy, and type of binding, showed that ion pair electrostatic attraction fixed the position of PS in HSA and
subsequently induced a combination of multiple noncovalent bonds such as H-bonds, hydrophobic interactions, and van der Waals
forces. Ion pair attraction and H-bonds produced a stable PS-HSA complex and led to a marked change in the secondary structure
of HSA in acidic media. The PS-HSA binding pattern and the process of change in HSA conformation were also investigated. The
potentially toxic effect of PS on the transport function of HSA in a normal physiological environment was analyzed. This work
provides a useful experimental strategy for studying the interaction of organic substances with biomacromolecules, helping us to
understand the activity or mechanism of toxicity of an organic compound.

INTRODUCTION

Human serum albumin (HSA) is the major protein compo-

nent of blood plasma but is also found in the interstitial fluid

of body tissues. In mammals, albumin is synthesized by the

liver and has a half-life of 19 days in the circulation (1,2). It

is the major contributor to the oncotic pressure of blood

plasma (3). Albumin is also reported to be chiefly respon-

sible for the maintenance of blood pH (4). Serum albumin

has been one of the most extensively studied proteins for the

past 40 years: its primary structure (a single-chain polypep-

tide of 585 residues) has been known for a long time, and its

tertiary structure was determined a few years ago by x-ray

crystallography (5). Its secondary structure comprises 67%

helix (six turns) and 17 disulfide bridges (6), including three

structurally similar a-helical domains (I–III), each divided

into subdomains A and B (7). HSA is called a multifunc-

tional plasma carrier protein because of its ability to bind an

unusually broad spectrum of ligands. These include inor-

ganic cations, organic anions, various drugs, amino acids,

and, perhaps most important, physiologically available insol-

uble endogenous compounds such as bilirubin (3), fatty

acids, and bile acids. Binding to HSA facilitates their trans-

port throughout the circulation (9).

Structural studies have mapped the locations of the fatty

acid binding sites throughout the protein (10,11). Like the

endogenous ligands, many exogenous compounds also bind

to HSA (12), for example, commonly used drugs with acidic

or electronegative features, e.g., warfarin (13), camptothe-

cins (14), and inorganic polymers such as polyoxometalates

(15,16). The primary drug binding sites on the protein have

been mapped by structural studies (17,18). Recently, studies

have been conducted on the binding of organic contaminants

or toxins to HSA, e.g., arazine (19), ochratoxin (20), methyl

parathion (21), and arsenic (22). These compounds often

cause conformational changes in the protein, e.g., decrease in

a-helix and increase of b-sheet content. These studies showed

that the protein binds ligands selectively and covalently: few

ligand molecules bind, with a high heat of reaction. In fact,

the binding of any substance is likely to affect the activity of

the protein, either enhancing it (23) with potential medical sig-

nificance or inhibiting it (24) if an organic contaminant or toxin

is involved.

Azo pigments are a structurally diverse and widely distrib-

uted group of synthetic compounds that include environ-

mental pollutants. Representatives of this group, poncean S

(PS) and its homologs discovered by Baurm (25), are used as

food additives and sometimes as cosmetic pigments and

biological stains, usually very effectively. PS can enter the

gastrointestinal tract via food intake or permeate into the

blood via skin absorption. As an azo compound, it can be

reduced by azo reductases to produce aromatic amines, some

of which are known carcinogens (26). Long-time use has

negative effects on human and animal liver, possibly result-

ing in degenerative pathological changes and cirrhosis (27).

pH varies widely among normal human body fluids, for

example, a pH of ,2 in gastric fluid, pH 4–7 in sweat, pH 4.5

in vaginal fluid, pH 5–7 in urine, and ;pH 7.4 in blood. Any

compound that binds to a protein, enzyme, gene, or other

biomacromolecule will affect its structure and function to a

greater or lesser extent. For example, a drug binding to HSA

in the blood may be transported to the focus of disease for

therapeutic effect, but binding of a toxin may impede the

transport of endogenous substances.
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Ligand binding to macromolecules has previously been

studied by methods such as equilibrium dialysis (28), elec-

trochemistry (29), calorimetery (30), spectrophotometry (31),

and fluorescence spectroscopy (32). In this work, isothermal

titration calorimetry (ITC), ultraviolet (UV), and circular

dichroism (CD) were used to characterize the binding of PS

to HSA at pH 1.81, 3.56, and 7.40, and the spectral cor-

rection technique (33), and the Langmuir and Temkin iso-

thermal models were used to elucidate the mechanism of

interaction. The interaction of PS with HSA was investigated

and compared in detail not only at room temperature but also

under normal physiological conditions: 0.8%–0.9% electro-

lyte, 37�C. The various methods yielded highly consistent

results concerning, e.g., the saturation binding number of PS,

the binding energy of the reaction, and the bonds involved.

Ion pair electrostatic attraction (34) fixes the position of PS in

HSA and subsequently induces the formation of a combi-

nation of other noncovalent bonds: H-bonds (35,36), hydro-

phobic interactions, and van der Waals forces. The type and

site of binding and the noncovalent bonds involved were

provisionally identified. Possible conformational change of

HSA in the presence of PS was also identified.

MATERIALS AND METHODS

Instruments and materials

The absorption spectra of PS and protein solutions were recorded with a

Model Lambda-25 spectrophotometer (Perkin-Elmer, Foster City, CA)

equipped with a thermostatic cell holder linked to a Model TS-030 water-

circulated thermostatic oven (Yiheng Sci. Technol., Shanghai, China). The

spectrophotometer was computer-controlled using UV WinLab software

(Version 2.85.04). The ITC experiments were carried out on a Model MSC-

ITC system (MicroCal, Studio City, CA) with measurement software. A

Model J-715 CD spectropolarimeter (Jasco Instruments, Tokyo, Japan) with

secondary structure estimation-standard analysis measurement software

(715 /No. B014460524, Jasco) was used to determine protein conformation.

A Model DK-8D electrothermic multiporous constant temperature (Shanghai

Yiheng Technol., Shanghai, China) was used in the temperature experiment.

Solution pHs were measured with a Model pHS-25 acidity meter (Shanghai

Precise Sci. Instrum., Shanghai, China).

HSA (250 mg, purity 96%–99%, Sigma Reagents, St. Louis, MO) was

dissolved in 250 ml deionized water as a stock solution (1.00 mg/ml HSA).

Solutions (0.010 mg/ml HSA) were prepared daily by diluting the stock and

were stored at 2�C–8�C. PS stock solution (0.750 mmol/l) was prepared by

dissolving 76 mg of PS (purity 75%, Shanghai Chemical Reagents, Chin.

Med. Group, Shanghai, China) in 100 ml deionized water. Solutions of

0.075 mmol/l PS were prepared daily by diluting the stock. A series of

Britton-Robinson (B-R) buffers, pH 1.81, 2.43, 2.97, 3.56, 4.19, 4.97, 5.43,

5.71, 6.38, 6.77, and 7.40, were prepared to adjust the acidities of solutions.

A 2.0 mol/l NaCl solution was prepared in deionized water to adjust the

ionic strengths of solutions to investigate the effects of electrolyte on non-

covalent binding. Both 0.01 mol/l EDTA and pH 3.6 acetic-acetate buffer

were prepared and used only in protein assays.

Photometric determination of the
PS-HSA interaction

All studies were carried out in a 10.0 ml calibrated flask containing a known

volume of HSA solution, 2.0 ml of B-R buffer (pH 1.81, 3.56, or 7.40), and a

known volume of 0.750 mmol/l PS. The solution was diluted to 10.0 ml with

deionized water and mixed thoroughly. After the reaction had proceeded for

5 min, the absorbances Al2 and Al1 of the HSA-PS solutions and A0
l2 and

A0
l1 of the reagent blank (without HSA) were measured at 568 nm (l2) and

495 nm (l1) against water. The parameters Ac, f, and g of each solution were

calculated. The Langmuir and Temkin isothermal models were applied to fit

plots g�1 vs. C�1
L and g vs. ln(CL). Finally, N, K, and DQ were calculated.

Thermodynamic characterization of the PS-HSA
interaction by ITC

ITC experiments were carried out as follows. The PS solution (0.600 mmol/l

in pH 1.81 and 3.56 B-R buffers or 0.300 mmol/l in pH 7.40 B-R buffer) was

injected ;40 times in 5 ml increments at 3 min intervals into the isothermal

cell containing HSA (1.6 mmol/l in pH 1.81 and 3.56 B-R buffers or 8.0

mmol/l in pH 7.40 B-R buffer). The cell temperature remained at 25�C or

37�C. Heats of dilution of PS, obtained separately by injecting into the

buffer, were used to correct the data. The corrected heats were divided by the

number of moles injected and analyzed using the Origin software (version

7.0) supplied by the manufacturer. The titration curve was fitted by a non-

linear least squares method and N, Kb, DH, and DS were determined.

CD measurement of HSA conformation in the
presence of PS

Buffer (1 ml, pH 1.81, 3.56, or 7.40) was mixed with 0.030 mg/ml HSA in

three flasks; 0, 0.015 or 0.060 mmol/l PS was added. The solutions were

diluted to 10.0 ml with deionized water. Simultaneously, a reagent blank

without PS was prepared. Before measurement, all the solutions were diluted

from 1.00 to 3.00 ml with deionized water. Each sample was allowed to

equilibrate for 15 min, then injected into a 0.1 cm light path cell, and the

mean residue ellipticity (MRE) of HSA was measured between 200 and 250 nm.

From the MRE curves, the relative contents of secondary structure forms of

HSA—a-helix, b-pleated sheet, b-turn, and random coil—were calculated

in all the solutions.

Protein assay

Light-absorption ratio variation (LARVA) (37) was used to assay protein

with very high sensitivity. A known volume of a sample containing ,70 mg

of protein was added to a 10 ml flask along with 1 ml 10 mmol/l EDTA and

1 ml of pH 3.6 acetate buffer. After mixing, 3.0 mmol/l PS was added and the

solution was diluted to 10.0 ml with deionized water. After 5 min, the ab-

sorbances (A495 and A568) of the solution were measured at 495 and 568 nm

against water. Using the same method, a reagent blank without protein was

prepared, and the absorbances (A0
495 and A0

568) were measured. The absorbance

ratio difference (DAr) of the PS-HSA solution was calculated by the relationship

DAr ¼
A568nm

A495nm

� A0

568nm

A
0

495nm

: (1)

DAr is linearly related to the protein concentration (CM0) as follows:

DAr ¼ pCM0
1 q; (2)

where p and q are constants obtained by linear regression of plots of DAr vs.

CM0 from the series of standard HSA solutions. The variable p as the sen-

sitivity factor is inversely proportional to the initial concentration (CL0) of

ligand (37): the less L added, the higher the sensitivity obtained. However,

too low a PS concentration will cause an obvious measurement error because

of background instrument noise. To optimize the addition, PS was added in

three concentrations (1.5, 3.0, and 4.5 mmol/l) to the series of standard HSA

solutions and the DAr of each was calculated. By considering both the low

limit of detection (LOD) and the linearity, an optimal PS concentration was

selected.
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RESULTS AND DISCUSSION

Effect of pH on the PS-HSA interaction

Fig. 1 illustrates the color change of PS solution in the presence

of HSA and also shows the chemical structure of PS. PS is an

orange anionic azo compound in aqueous solution 1, and it

reacts with HSA to form a red product in solution 2. The

absorption spectrum of the product shows a marked red shift.

HSA-PS solutions were measured in various pH media, and

their absorption spectra are shown in Fig. 2 A. The interval

between the positive peak and the negative trough increases

with increasing acidity of solution. From curves 1–4, the peak

valley interval changes little when the pH is below 3.56. Given

the dissociation constants (KR) of the side groups (R) of basic

and acidic amino acid residues (AARs) (10.53 for Lys, 6.00 for

His, 12.48 for Arg, 3.65 for Asp, and 4.25 for Glu), no R groups

will have a negative charge when the pH is ,3.65, whereas the

Rs of the basic AARs will be positively charged.

PS anions will enter the HSA cleft with no charge repul-

sion. However, there are 98 negatively charged acidic AARs

in HSA, together with 98 positively charged basic AARs when

the pH is .4.25. Entry of PS will therefore be opposed by

charge repulsion. Therefore, from curves 6–11, the binding of

PS to HSA becomes progressively weaker. The two troughs in

each curve indicate that PS-HSA binding is heterogeneous at

any pH, i.e., there is a mixture of complexes linked via two,

three, and four sulfonate groups because the PS concentration

is not high enough. To compare the interactions of PS with

HSA in various pH media including that of normal blood, i.e.,

pH 7.40, three buffer solutions, pH 1.81, 3.56, and 7.40, were

used. From curves 1, 4, and 11 in A, 568 (l2) and 495 nm (l1)

were the wavelengths that most clearly indicated the binding

process and were used in subsequent work.

From the absorption spectra shown in Fig. 2 B, it is apparent

that formation of the PS-HSA complex resulted in red shifts:

from 497 to 565 nm (curve 1) at pH 1.81 and from 500 to 566

nm (curves 2 and 3) at pH 3.56 and 7.40. Interestingly, a sec-

ondary trough appears at 528 nm only in curve 1. A possible

reason is that the unfolding of HSA at pH 1.81 increases the

distances among positively charged AARs. The dissociation

constants (Ka) of PS (L) were also determined spectrophoto-

metrically (38), and the results indicated that pKa is between 2

and 3 for H2L3� and more than 9 for HL4�. Therefore, H2L3�

and HL4� were both present in the pH 1.81 solution, leading

to three and four ionic bonds between HSA and each PS

molecule. Thus, PS-HSA binding is heterogeneous at pH 1.81

even if there is sufficient PS in solution to achieve saturation.

Photometric characterization of the
PS-HSA interaction

The interaction of PS (L) with HSA (M) is summarized as follows:

NPS 1 HSA�
Kb

HSAðPSÞN
Initiation CL0ðA0

l2Þ CM0 0

Equilibrium CL ¼ CL0 � NCM0ðAl1;Al2Þ CM/0 CM0ðACÞ
From the color change in Fig. 1, it is clear that to deter-

mine the absorbance of the PS-HSA complex in solution 3,

FIGURE 1 Cartoon illustrating the color change in the HSA-PS reaction:

(1) PS solution; (2) HSA-PS solution containing excess HSA in which free

PS approached zero; (3) As 2, but containing micro amounts of HSA.

Solution 3 consists of solutions 4 and 5, which were actually nonmeasurable.

FIGURE 2 (A) Absorption spectra, measured against the reagent blank, of

HSA-PS solutions containing 7.5 mmol/l PS and 50.0 mg/l HSA at pH

values (1–11): 1.81, 2.43, 2.97, 3.56, 4.19, 4.97, 5.43, 5.71, 6.38, 6.77, and

7.40. (B) Absorption spectra of the solutions containing 7.5 mmol/l PS and

0.80 mg/ml HSA at pH 1.81 (1), 3.56 (2), and 7.40 (3) against water. There

was no free PS because the solutions contained excess HSA.

908 Gao et al.

Biophysical Journal 94(3) 906–917



interference by excess PS in solution 4 must be eliminated.

The spectral correction technique (33) proposed previously

is a useful method for this; it involves measuring solutions 1,

2, and 3. The effective fraction (f) of PS bound to HSA and

the molar ratio (g) of PS bound to HSA are calculated by the

relationships (39)

f ¼ Ac � Al2

A
0

l2

1 1 (3)

and

g ¼ f 3
CL0

CM0

; (4)

where

Ac ¼
Al2 � bAl1

1� ab
: (5)

Returning to the reaction equation above, CM0 and CL0 are

the initial molar concentrations of HSA and PS; Ac indicates

the real absorbance of the HSA-PS complex in solution 3 at

568 nm, which cannot be measured directly. Al2 and Al1 are

the absorbances of the HSA-PS solution 3 measured at 568

and 495 nm, respectively, against water; a and b are correc-

tion constants and were calculated by measuring solutions 2

and 1 shown in Fig. 1. The g value will approach the satura-

tion number (N) of PS bound with the increase of PS in a

HSA solution.

The absorbance ratios of the HSA-PS solutions were mea-

sured at 495 and 568 nm (Fig. 3 A). The A495/A568 ratios in

three pH media all decrease with increasing HSA concen-

tration and approach a constant value of 1.6 when the molar

concentration of HSA is more than 1.2 times that of PS. This

indicates that more and more PS molecules became bound to

HSA until no excess PS was free in solution, i.e., solution 2

in Fig. 1. Thus, the constant minimum should be a of the

binding product; the b values of PS in various media corre-

spond to the A568/A495 ratio in the absence of HSA, which are

located at the beginnings of curves 1–3. By measuring a

series of PS solutions containing known concentrations of

HSA, Ac, f, and g were calculated using Eqs. 4–6. The vari-

ation in g with PS is shown in Fig. 3 B; the value increases

with increasing PS concentration. Moreover, the values

approach the following maxima: 30 when the PS/HSA molar

ratio is more than 30 (from curve 1), 25 when the ratio is

more than 25 (from curve 2), and 1.7 when the ratio is more

than 5 (from curve 3).

These results indicate that the binding of PS to HSA is

saturable. When more PS is added, the fraction of excess PS

steadily increases, but g does not change. Thus, N of PS

molecules bound per molecule of HSA are ;30 at pH 1.81,

;25 at pH 3.56, and ;1.7 at pH 7.40. These values will be

examined further in the following experiments. As described

above, all the basic AARs in HSA form positively charged R
groups in pH solution of ,3.65, whereas all acidic AARs

will not dissociate. Thus, PS anions bind easily to the HSA

surface until saturation is reached. In contrast, negative R
groups of the acidic AARs rejecting the concentration of PS

ions increases when pH is .4.25. Therefore, N of PS at pH

7.40 is much less than those in acidic media. The Langmuir

and Temkin isothermal models (40) below were used to fit

the experimental data.

1

g
¼ 1

N
1

1

KNCL

(6)

and

FIGURE 3 (A) Variation of the absorbance ratio

(A495/A568) of solutions containing 7.5 mmol/l PS and

0�0.80 mg/ml HSA. (B) Variation of g in solutions

containing 50.0 mg/l HSA and variable PS. (1) pH

1.81, (2) pH 3.56, and (3) pH 7.40.
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g ¼ �NRT

DQ
lnðCLÞ1 a; (7)

where CL is the equilibrium concentration of PS to be calcu-

lated by CL ¼ (1 � f)CL0, K is the adsorption constant, and

DQ the adsorption energy (J/mol) of a saturating concentra-

tion of PS. The term a is a regression constant, T the tem-

perature in degrees Kelvin, and R the gas constant, 8.314 J

mol�1 K�1. The results are given in Fig. 4. The binding of PS

to HSA fitted both models when the number of PS molecules

per HSA molecule was less than the maximal binding

number. Therefore, the interaction of PS with HSA corre-

sponds to chemical monolayer adsorption. From the inter-

cepts and gradients of the regression lines in Fig. 4 A, both N
and K of PS may be calculated (Table 1). The N values were

consistent with those obtained from Fig. 3. DQ of PS was

calculated from the line gradients in Fig. 4 B, as shown in

Table 1. The increase in K and DQ values with increase in pH

shows that PS binds more stably in neutral solution. A pos-

sible reason is that a low PS binding number resulted in more

binding sites on HSA. In addition, the binding of PS is exo-

thermic because of the negative heat of adsorption.

ITC characterization of the PS-HSA interaction

To understand the mechanism of HSA-PS binding and to

assess the effect of environmental conditions, e.g., acidity,

on its specificity and stability, detailed thermodynamic data

are needed. ITC measurements provide information on ther-

modynamic quantities such as enthalpy and heat capacity

changes during the molecular interaction directly from the

heat produced by the reaction and have been used to study,

for example, protein-ligand interactions (41), DNA triplex

formation (42), and human immunodeficiency virus (HIV)

protease activity (43). Fig. 5 (X-1) (X: A–D) depicts a typical

isothermal titration profile obtained by injecting PS into the

ITC cell containing HSA. An exothermic heat pulse is

detected after each injection; its magnitude progressively

decreases until a plateau is reached corresponding to the heat

of dilution of the peptide species in the buffer and indicating

saturation. The heat evolved at each injection was corrected

for the heat of dilution, which was determined separately by

injecting the PS solution into the buffer and divided by the

number of moles injected. The resulting values were plotted

as a function of the PS/HSA molar ratio and fitted to a sig-

moid curve by a nonlinear least squares method (curves X-2

in Fig. 5). Values for the equilibrium binding constant (Kb),

binding number (N), enthalpy change (DH), and entropy

change (DS) of the PS-HSA reaction at various pHs were

obtained from curves X-2 and calculated by the Gibbs free

energy (DG) equation:

DG ¼ �RT ln Kb ¼ DH � TDS: (8)

The thermodynamic parameters derived from these curves

are summarized in Table 1. Comparison with the photomet-

ric method (above) shows that the three measurements yield

similar N values at three pHs. DH and DQ both become

increasingly negative with increasing pH at 25�C, and DQ
approaches the DH value at the same pH. Therefore, the

Temkin isothermal model can be used to explain the binding

mechanism. Because DH is much less than 60 kcal/mol (44),

the PS-HSA interaction is noncovalent: it involves H-bonds,

ion pair attraction, hydrophobic interactions, and van der

Waals forces. The Kb values indicate that the complex

becomes more stable with increasing acidity of solution. This

can be explained by the tendency of DG to decrease with

increasing pH (Table 1 and Fig. 6). Comparison of the DG,

DH, and �TDS values suggests that the PS-HSA interaction

is amphipathic and H-bonds and ion pair binding are both

major contributors, i.e., the interaction of PS with HSA de-

pends on a combination of ion pair attraction and H-bonds.

Moreover, the heat released during the PS-HSA reaction

increases with increasing pH, i.e., the ion pair attraction and

FIGURE 4 Plots of (A) g�1 vs. CL
�1 and (B) g vs.

ln(CL) from solutions containing 50.0 mg/l HSA and

variable PS. (1) pH 1.81, (2) pH 3.56, and (3) pH 7.40.
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H-bonds between PS and HSA are weakened in more acidic

solution. This indicates that the number of H-bonds formed

by PS is lower in more acidic solutions.

As described above, the unfolding of HSA at pH 1.81

increases the distance among positively charged AARs. In

contrast, DS becomes more negative with increasing pH.

This indicates that PS binding destroyed the internal hydro-

phobic interactions in HSA at pH values above 3.56, re-

placing them with ion pair attraction and H-bonds. The

chemical structure of PS shows that all the aryls are enclosed

by hydrophilic groups (�SO3
�, �N¼N�, and �OH), and

PS has no lipophilic substituent, e.g., the halogen or alkyl

group. Thus, hydrophobic interactions between PS and HSA

were probably weaker than the internal ones in HSA. On the

other hand, PS binding could have induced folding of HSA,

decreasing the entropy. In addition, comparison of the ther-

modynamic parameters of the solution between 37�C and

25�C at pH 7.40 shows that�DH becomes more positive but

DS becomes more negative (Table 1 and Fig. 6). This indi-

cates that ion pair attraction and H-bonds were strengthened,

but hydrophobic interaction was weakened at normal phys-

iological pH.

Fixing of the position of PS by ion pair
attraction induces the formation of a
combination of multiple bonds

Electrostatic forces have an important role in the binding of

ligands to proteins (16), especially in acidic media. However,

the relationship between the number of anionic groups on a

ligand and the number of basic AARs on a protein has not yet

been determined. From f ¼ N/Nb, the effective binding rate

(f) of PS to HSA can be calculated, where Nb is the total

number of protonated basic AARs of HSA (Lys, His, and

Arg). The dissociation constants of the R groups of Lys, His,

and Arg indicate that they are all positively charged when the

pH is ,6. However, only the R groups of Lys and Arg

residues are protonated in neutral medium. Thus, Nb is 98 in

acidic solution and 79 in neutral solution.

TABLE 1 Determination of the thermodynamic parameters of the HSA-PS binding reaction at pH 1.81, 3.56, and 7.40 at 25�C

pH N* K*, 3106 M�1 DQy, kcal/mol Nz Kb
z, 3106 M�1 DH z, kcal/mol DSz, (cal/mol)K�1 DG§, kcal/mol

1.81 31 1.51 �9.33 29.4 5.93 �7.95 4.34 �9.23

3.56 26 1.39 �11.0 23.3 1.12 �9.02 �2.59 �8.25

7.40 1.7 2.88 �12.4 1.56 0.78 �10.9 �9.58 �8.04

7.40{ / / / 1.43 0.30 �11.2 �11.2 �7.73

*By the Langmuir adsorption isothermal.
yBy the Temkin adsorption model.
zBy ITC.
§Calculated by Eq. 8.
{At 37�C.

FIGURE 5 X-1 (X¼ A, B, C, and D): ITC titration profile of PS-HSA binding at (A) pH 1.81, (B) pH 3.56, and (C and D) pH 7.40. The temperature was 25�C

(A–C) or 37�C (D). Each pulse corresponds to a 5-ml injection of (A and B) 0.600 mmol/l PS or (C and D) 0.300 mmol/l PS into the ITC cell (1.4685 ml)

containing (A and B) 1.6 mmol/l HSA or (C and D) 8.0 mmol/l HSA. X-2. The area of each peak in X-1 was integrated and corrected for the heat of dilution,

which was estimated by a separate experiment by injecting the PS into the B-R buffer. The corrected heat was divided by the moles of injectant, and values were

plotted as a function of the PS/HSA molar ratio. The titration curve was fitted by a nonlinear least squares method.
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In a more acidic solution, the peptide chain of a protein

unfolds (16), and there is little steric hindrance. If the binding

of PS to HSA depended only on ion pair attraction, f should

approach 100%. From the N values obtained above, f of PS

was calculated to be 31% at pH 1.81, 27% at pH 3.56, and

2.2% at pH 7.40. Because each PS molecule has four sulfo-

nate groups, it can bind to at most four basic AARs, so all the

basic AARs in HSA could bind to PS at pH 1.81 and 3.56.

However, most of the PS molecules bound to the peptide

chain via three sulfonates, i.e., three ionic bonds, at pH 1.81,

whereas most of them bound via four sulfonates at pH 3.56.

HSA tends to fold at pH 7.40, so steric hindrance increases,

leading to a marked decrease of f even though PS may still

bind via four ionic bonds. From the number of bonds formed

by PS, the PS-HSA binding energy is low at pH 1.81, as

confirmed by the DH values above. In conclusion, ion pair

attraction could have induced PS to enter the cleft of HSA,

i.e., electrostatic attraction plays a position-fixing role in the

interaction of the small ligand with the protein.

Once the PS molecules are positioned in HSA, other non-

covalent bonds—H-bonds, hydrophobic interactions, and

van der Waals forces—could act in combination. PS contains

other potential binding groups in addition to the negatively

charged �SO3
� groups, e.g., �N¼N� and �OH, which

could form H-bonds with polar side groups of AARs in the

peptide chain, but there will be little hydrophobic interaction

between PS and HSA, as described above. An illustration of

PS bound to the peptide chain in acidic solution is shown in

Fig. 7. Thus, the combined action of noncovalent bonds will

bind the small ligand firmly. As an example, the side group

of K195 in the IIA domain and those of K446 and H464 in

the IIIA domain would fix PS by ion pair bonds, and then the

side groups of S193, Q198, and E465 would bind the PS by

H-bonds. In a neutral solution, pH 7.40, the negative R
groups of Asp and Glu, which are distributed throughout the

peptide chain, will exclude the entry of PS anions even

though the positive Rs of Lys and Arg residues attract them.

Possibly only two spatial positions can be occupied by the

PS anion, i.e., between K212–R218 and R348–K351, K402–

R410 and R428–K432, which have no negative R groups

around them. This is consistent with the number of PS mol-

ecules bound at pH 7.40.

Effects of electrolyte, temperature, and in situ
pH change

The stability of a noncovalent complex is always affected

by properties of the liquid environment in the body such as

pH, ionic strength, and temperature (45,46). The effect of

FIGURE 6 Comparative distribution of DH (left column) and TDS (middle
column) in DG (right column) at pH 1.81 (25�C), 3.56 (25�C), and 7.40

(25�C and 37�C).

FIGURE 7 Cartoon illustrating the possible binding sites of PS in HSA and the corresponding bonds. (A) HSA single chain; red line represents positively

charged amino acid residues. (B) As an example, PS is inserted between two a-helices (one from S192 to R197 in the IIA domain, and the other in green from

V462 to P468 in the IIIA domain), replacing the original internal noncovalent bonds and forming ion pair bonds (green concave-convex rectangle), H-bonds

(yellow rounded rectangle), and possibly hydrophobic interactions (red ellipse). (C) Cartoon illustrating how the secondary structure of HSA changed from

b-sheet to helix (PS binding with the side groups (Rs) on lines 2 and 3) and turn (PS binding with the Rs on line 1 only) in PS solution. Lines 1, 2, and 3: peptide

chain, and Rank A-P: AAR sequence.
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electrolytes on the g value of PS in the HSA-PS interaction is

shown in Fig. 8 A. With increasing electrolyte concentration,

g decreases in various pH media and the change from curve

3 was most evident at pH 7.40. Its value in 1.0 mol/l elec-

trolyte is 70% that in the absence of electrolyte at pH 1.81

and pH 3.56, but only 25% at pH 7.40. This is due to the

Debye-Huckel screening, where the Debye length is in-

versely proportional to the square root of the ionic strength of

solution (47). Human blood normally contains ;0.15 mol/l

electrolyte. From all curves in A, g is only slightly different

in such a solution from g in the absence of electrolyte. This

implies that the ions in body fluids would not affect PS

binding. When the ion concentration is increased to .0.5

mol/l, the marked adsorption of PS suggests that such con-

ditions could be favorable for transmission of endogenous

substances and drugs.

At higher temperature, the protein cleft expands, increas-

ing the distance between the adjacent peptide chains. Thus,

the effective number of ligand binding sites is reduced, often

causing desorption of ligand from the protein (48). However,

the interaction of PS with HSA seems contradictory. At pH

7.4, g decreases from curve 3 in Fig. 8 B, especially when the

temperature is .40�C. At 37�C, g decreases to ;1.7 from

;1.9 at room temperature. In contrast, curves 1 and 2 indi-

cate that g increases slightly with warming. A PS-HSA com-

plex with a high binding number would form aggregates

so that the PS would be physically adsorbed on the particle

surfaces.

The slightness of the effects of ionic strength ,0.2 mol/l

and temperature ,40�C indicates that PS binds strongly to

HSA although the interaction is noncovalent. Thus, the

penetration of PS-like organic structures into the blood could

inhibit the endogenous transport of drugs. To investigate the

stability of the product with the highest PS binding number

at pH 1.81, a PS-HSA solution prepared at pH 1.81 was

measured and then the pH was adjusted in situ step-by-step

with 1 mol/l and 0.1 mol/l NaOH from pH 1.81 to 7.40. g

was calculated at each pH by Eq. 4, and its variation is shown

in Fig. 8 C. The g values in two such solutions, containing

saturating (solution 1) and semisaturating (solution 2) con-

centrations of PS, approach those in Fig. 3 B obtained from

PS-HSA solutions prepared independently at pH 3.56 and

7.40. Moreover, g decreases markedly when the pH exceeds

the isoelectric point of HSA. This is attributed to the un-

folding of HSA in acidic media and the protonation of basic

AARs, which is less at pH values above 4.7. In addition, the

PS-HSA complex formed at pH 1.81 can be destroyed

by low pH, as indicated by the trend in g, i.e., binding to HSA

is reversible and has not caused permanent denaturation.

Effect of PS on the secondary structure of HSA

The specific conformation of a protein with a particular func-

tion results from covalent and noncovalent interactions among

its amino acid residues. When an organic compound such as a

pollutant, drug, or toxin is added to a protein solution, the

internal noncovalent interactions of the peptide chain may be

altered and possibly destroyed, changing the original confor-

mation. In particular, strong binding between a protein and an

organic ligand may cause a permanent and irreversible change

in the conformation and loss of the original function. CD spec-

trometry is often used to evaluate the secondary structure of a

protein, i.e., the contents of b-pleated sheet, b-turn, a-helix,

and random coil. The molar ellipticity CD curves of the PS-

HSA solutions in various pH media are shown in Fig. 9, and

the analytical results are summarized in Table 2.

The b-sheet content of HSA decreased to 0 at pH 1.81 and

3.56 with less than saturating concentrations of PS (15 mmol/l),

FIGURE 8 Effects of (A) electrolyte, (B) temperature, and (C) pH on g of solutions. Both A and B contained 0.030 mmol/l PS and 50.0 mg/l HSA (1 and 2) or

200 mg/l HSA (3) at (1) pH 1.81, (2) pH 3.56, and (3) pH 7.40. (C) The pH of the solution (25 ml) was adjusted in situ step-by-step with 1 mol/l and 0.1 mol/l

NaOH, where solution 1 contained 60.0 mg/l HSA and 0.015 mmol/l PS and solution 2 contained 60.0 mg/l HSA and 0.060 mmol/l PS.

Binding of Poncean S to HSA 913

Biophysical Journal 94(3) 906–917



where ;80% of all available binding sites in HSA were

bound by PS. The disappearance of b-sheet resulted in a

marked increase in b-turn content, for example, from 4.3% at

pH 1.81 and 5.8% at pH 3.56 to 30.1% and 30.7%.

Moreover, the helix content increased by ;20%. Compar-

ison between saturating and subsaturating concentrations of

PS produced no obvious change in secondary structure

contents though 4 times the molarity of PS was added. Thus,

a small amount of PS leads to a marked change of protein

conformation in acidic media. Fig. 7 C illustrates how the

binding may affect changes from b-pleated sheet to helix and

turn. On a single peptide chain (chain 1), PS could bridge the

side groups (Rs) CA1 (rank A and line 1) and CG1 by ion pair

attraction.

Thus, both the A–C and E–G sector sheets would rotate

inversely around CD1 to split the original H-bonds between

chains 1 and 2, leading to formation of an H-bond between

C¼O (E1) and NH (C1). Thus, the pleated sheet is changed

into a turn. If both Rs were located on chains 2 and 3, such as

CG2 and CM3, respectively, ion pair attraction would draw

both of them close to the two available �SO3
� groups of PS

by inverse rotation. Because of the perturbation caused by

PS, the original H-bonds between chains 2 and 3 would be

destroyed and a new H-bond between�NH (I3) and�OH of

PS formed. Therefore, the b-sheet was changed into helix. In

contrast, all the secondary conformational factors changed

little at pH 7.40 even with saturating PS concentrations. This

is presumably because there is too little binding of PS at pH

7.40 to affect the conformation of HSA markedly. As a

deduction, the binding of PS to proteins or enzymes in acidic

environments, e.g., stomach and skin secretions, might

produce obvious toxicity. In normal blood, the tight binding

of PS to HSA would inhibit the transmission of endogenous

substances and drugs, though the secondary conformation of

HSA would not be markedly altered.

Application of the interaction to protein assay

Calibration graphs and LOD

The characterization of the binding reaction and the effects

of electrolyte and pH described above indicate that the

interaction between PS and HSA is influenced by a range of

experimental conditions such as ionic strength ,0.2 mol/l,

pH between 2 and 4, and temperature ,40�C. Thus, it may

be used for protein assay by LARVA (37), which has more

than 10 times the analytical sensitivity of ordinary spectro-

photometry. If EDTA is added to sequester most metal ions,

this binding reaction is very selective. Three standard series

of HSA were prepared, and the regression equations are

given in Table 3. The LOD of HSA, defined as 3 times the

standard deviation of 10 replicated blanks, was also calcu-

lated and is given in Table 3: the less PS added, the higher

the sensitivity obtained. However, too low a PS concentra-

tion could cause an obvious measurement error because of

background instrument noise. The LODs of series 2 and 3 are

the lowest, but series 2 gives the best linearity. Thus, 3.0

mmol/l PS was added to determine the protein concentrations

in samples such as food and blood. The corresponding LOD

of protein is 0.2 mg/l.

Effect of foreign substances

EDTA was used to sequester most of the metals that might

occur in the samples. The results indicate that none of the

following species affected the direct determination of 5.0

mg/l HSA (error less than 65%) with PS: 100 mg/l lysine,

glutamine, alanine; 100 mg/l K1, Cl�; 5.0 mg/l Ca21, PO4
3�,

glucose; 2 mg/l Mg21, SO4
2�, vitamin C; 1 mg/l Zn21, Fe21,

Fe31; and 0.2 mg/l Cu21. Therefore, the recommended method

was selective and suitable for quantitative analysis of water-

soluble proteins.

FIGURE 9 The molar ellipticity CD curves for HSA (0.030 mg/ml)

solutions at (A) pH 1.81, (B) pH 3.56, and (C) pH 7.40, containing PS: (1) 0,

(2) 0.015, and (3) 0.060 mmol/l in both A and B and (1) 0, (2) 0.56, and (3)

2.25 mmol/l in C.

TABLE 2 Variation of the secondary conformational factors of

HSA in the presence of PS in various pH media

pH Factor

Rate, %

no PS 0.015 mmol/l 0.060 mmol/l PS

1.81 a-helix 29.3 35.6 39.1

b-sheet 35.2 0 0

Turn 4.3 30.1 32

Random coil 31.2 34.3 29

3.56 a-helix 37.8 42.4 45

b-sheet 28.6 0 0

Turn 5.8 30.7 31.5

Random coil 27.8 26.9 23.5

7.40 a-helix 32.2 34.1* 31.5y

b-sheet 26 16.5* 27.2y

Turn 16.4 20* 15.5y

Random coil 25.4 29.4* 25.8y

All of the solutions contained 0.030 mg/ml HSA.

*Contained 0.56 mmol/l PS.
y2.25 mmol/l PS.
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Analyses of samples

Five samples—quail egg white, milk, human blood, chicken

serum, and eel serum—were determined. Both quail egg

white and milk may be diluted and then colored directly. The

other samples were treated according to the following pro-

cedures: 5 ml blood extracted from human or animal veins

was centrifuged at 3000 rpm for 10 min and 1.00 ml of the

supernatant was diluted to 100 ml. After mixing, protein was

assayed. The results are given in Table 4. They agreed with

the values obtained by classical Coomassie brilliant blue

colorimetry (49). This indicates that the proposed method is

accurate and reliable for practical analysis.

CONCLUSIONS

Knowledge of biomolecular interactions such as protein-

protein (50) and protein-ligand binding, enzyme catalysis,

and inhibition is important for our understanding of cellular

processes including signal transduction, gene regulation, and

enzyme reactions (51). Such knowledge significantly im-

proves our understanding of biological systems. More and

more studies of protein-ligand interactions have led to in-

creasingly widespread interest (52–54), where conventional

molecular spectrometric methods such as fluorescent probe,

UV, and CD are most widely used. Recently, binding mech-

anisms have been studied intensively using x-ray crystal-

lography, NMR, ITC, and surface plasmon resonance

biosensors (55,56), which are powerful analytical tools in

enzymology, rational drug design, and toxicology. Ligand

binding is often associated with denaturation of macromol-

ecules (folding or unfolding).

Some modes of binding are exothermic (such as electro-

static interaction) and others are endothermic (such as

unfolding). Thus, the primary interactions are usually elec-

trostatic (16). The formation of covalent complexes with

specific residues in a protein is being studied increasingly in,

for example, aspects of DNA repair (57), identification of

enzyme active sites (58), pharmaceutical development (59),

and heavy metal toxicity (60). However, noncovalent inter-

actions are more numerous in cells. Although a noncovalent

bond is often weaker than a covalent bond, the combination

of many noncovalent bonds will produce a stronger associ-

ation. This work proposed that electrostatic interaction

induced a combination of noncovalent bonds—H-bonds,

hydrophobic interactions, and van der Waals forces—which

was illustrated. In contrast to the binding of metal complexes

and pesticides (21), noncovalent binding of organic com-

pounds is unselective.

By characterizing the interaction of PS with HSA using

various instrumentations and isothermal models, highly con-

sistent results were obtained concerning, e.g., binding

number, binding energy, and type of binding. PS formed a

stable complex with HSA, and the combination of non-

covalent bonds caused a marked change in the secondary

conformation of HSA in acidic media. This is the first change

process of this kind to be illustrated. The potentially toxic

effect of PS was analyzed by determining PS-HSA binding

under normal physiological conditions. The mechanism of

interaction with the protein is very complicated. Although

the crystal structures of a number of proteins have been

analyzed and possible binding regions identified (2), it has

not been possible to distinguish all the intermediate forms or

to determine single noncovalent bond energies accurately.

This work provides a useful experimental strategy for study-

ing the interaction of organic substances with biomacromol-

ecules. It helps us to understand the activity or mechanism of

toxicity of an organic compound.
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TABLE 3 The linear regression equations at pH 3.6 for HSA assay and LOD of HSA

Series PS, mmol/l Linear scope of HSA, mg/l Regression equation R* sy LODz, mg/l

1 1.5 0–3.0 DAr ¼ 0.0491CM0 1 0.011 0.9867 0.0060 0.4

2 3.0 0–7.0 DAr ¼ 0.0354CM0 1 0.005 0.9980 0.0025 0.2

3 4.5 0–10.0 DAr ¼ 0.0237CM0 � 0.004 0.9969 0.0016 0.2

*Linear correlation coefficient.
yStandard deviation of 10 replicated reagent blanks.
zLOD ¼ 3s/p (p-slope of line).

TABLE 4 Determination of proteins in samples with PS at

pH 3.60

Sample*

HSA

added,

mg

Proteins

foundy,

mg

Recovery,

%

Protein content

in sample,

mg/ml

Quail egg white 0 38.7 6 1.7 38.7

10 50.7, 48.4 120.1, 97.5

Fresh milk 0 58.3 6 0.6 58.3

10 69.8, 67.8 115, 95.2

Personal serum 0 20.1 6 1.5 20.1

10 31.2, 30.6 111, 105

Chicken serum 0 37.1 6 1.4 37.1

20 56.8, 57.7 98.7, 103.2

Eel serum 0 11.9 6 2.4 11.9

10 20.9, 22.3 90.0, 104.2

*0.100 mL of the diluted solution of a sample was added.
yAverage of four replicated determinations in a 10-ml colorimetric flask.
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